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3 loss

Cover: index
simulation following
the stochastic
volatility process

This course is based on the ETH course and textbook of the same name, by McNeil, Fray,
and Embrechts. The present document is based on this textbook and Prof. Neshlehov’s
lectures. In order, we will focus on: stochastic volatility, extreme-value theory, multivariate
models, risk aggregation, and backtesting.

We will assume good working knowledge of probability and statistics. In addition, we
remind ourselves of the survivor functiondef 0.1 F(x) := P(X > x) = 1 − F(x), as well as the
α-quantiledef 0.2 , where α ∈ (0, 1), defined to be

qα = F−1(α) = inf{x ∈ R : F(x) ≥ α}

In this course, we would like to quantify one’s exposure to bad consequences. The
likelihood of loss or less-than-expected gains is called riskdef 0.3 . Risk is necessary:

taking this course
incurs a risk of a
poor grade

The following are types of risk:

_____ Risk Description
Credit Risk Odds a debtor defaults on payment
Market Risk Exposure to price fluctuations of bonds, stocks, or

derivatives
Operational Risk Risk relating to circumstantial adverse events (e.g.

institutional fraud)
Liquidity Risk Risk of damage from not having sufficient assets to

pay off debts
Model Risk Risk associated with financial model inaccuracies;

closely related to operational risk
Underwriting Risk Odds that an insured makes a claim on their policy

The above types of risk interact with each-other. Quantitative risk management aims to
model these interactions and hedge against risk.

I Loss
risk factors

A portfoliodef 1.1 is a collection of assets or liabilities. Portfolios may
include stocks,
bonds, derivatives,
risky loans, or
insurance contracts,
for example.

Denote by Vt the value of the portfolio at
time t. We denote by ∆t a time horizondef 1.2 , i.e. a duration of time. Assuming that Vt is known,
that the composition of the portfolio remains constant over the time horizon, and that
there are no payments made, we denote by Vt+1 the value of the portfolio at time t + ∆t.

Hence, Vt+k is the
value of the portfolio
at time t + k∆t

We write ∆Vt+1 = Vt+1 − Vt. This is a random variable which takes a negative value on
losses and a positive value on profits. We say that it follows the profit-and-loss distributiondef 1.3 .
Since we care about managing risk in this course, we prefer that losses are positively
indicated. Define lossdef 1.4 as

Lt+1 = −∆Vt+1 =

Vt − Vt+1 ∆t is a short horizon

Vt −
Vt+1

1+rt,1
∆t is a long horizon

Note that, for long time horizons, we must account for the time value of money. If rt,1 is
the risk-free interest rate, applied over ∆t, then α(1 + rt,1) at time t + 1 is the equivalent

https://rpubs.com/nharnessUTD/montecarlostochasticvolatility
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in value to α at time t.This is akin to the
concept of

opportunity cost

Hence, Vt+1 must be adjusted to Vt+1/(1 + rr,1) to keep Lt+1’s time-
value of money consistent. Working in "t + 1 dollars," one could equivalently write
Lt+1 = Vt(1 + rt,1) − Vt+1 for long time intervals.

Vt is a function of multiple risk factors def 1.5, denoted by Zt =
〈
Zt,1, ..., Zt,d

〉
.If one’s portfolio

consists of insurance
policies, Zt,4 might

be the probability
that a claim is made.

Thus, we write
Vt = f (t,Zt) with f : R+ × Rd → R, called the risk function def 1.6. When Zt is known, we write
Zt = zt. In this case, f (t, zt) is called the realized value def 1.7of Vt.

Eg. 1.1 Consider a portfolio of d stocks, and let λi denote the number of shares in
stock i at time t. Let St,i denote the price of the stock i. Write

Zt,i = log St,i : i ∈ [d]

The value of the portfolio is then

Vt =
d∑
i=1

λiSt,i =
d∑
i=1

λie
Zt,i

This formula is called the value with log prices def 1.8. The purpose of writing Zt =
log(St) versus Zt = St is purely numerical.

Risk factors may change over the time horizon. We call time-series changes in risk factors
risk factor changes def 1.9, denoted by Xt+1. In particular,

Xt+1 = Zt+1 − Zt

Rearranging Def 1.6 gives

Lt+1 = f (t,Zt) − f (t + 1,Zt + Xt+1)

"Observable" =
"Known" =

"Realized" =
"Actualized"

When modeling loss, we assume that zt is observable. Thus, we are forced only to consider
Xt+1 as a random variable. If xt+1 is observable, then Lt+1 is called the realized loss def 1.10.
Realized loss is notated by l[t](x) = Lt+1, especially when we wish to parameterize xt+1.
For simplicity, we drop the subscript, i.e. x = xt+1. We call this function the loss operator def 1.11.

We say that Lt+1 follows a loss distribution def 1.12. The loss distribution is typically right-skewed
and has a fat right tail: the probability of heavy profits is small, but it is easy to incur
heavy losses.

We may use a linearization to obtain the linearized loss def 1.13, denoted L∆t+1 ≈ Lt+1.

prop 1.1The linearized loss, assuming differentiability of f along t and Zt, is given by

L∆t+1 = −ft(t, zt) −
d∑
i=1

fzt,i (t, zt)Xt+1,i
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proof. Recall Lt+1 = f (t, zt) − f (t + 1, zt+1). We will approximate f (t + 1, zt+1):

f (t + 1, zt+1) ≈ f (t, zt) + ∇f (t, zt) • (⟨t + 1, zt+1⟩ − ⟨t, zt⟩)

This is

f (t, zt) + ft(t, zt) · 1 +
d∑
i=1

fzt,i (t, zt)Xt+1,i

Applying to Lt+1 gives

L∆t+1 = f (t, zt)−

f (t, zt) + ft(t, zt) +
d∑
i=1

fzt,i (t, zt)Xt+1,i

 = −ft(t, zt)−
d∑
i=1

fzt,i (t, zt)Xt+1,i

as desired.

Linearized loss is convenient and easy to understand, but the assumption of its accuracy
is a heavy one. An easy improvement would be to consider higher-order Taylor approxi-
mations, but the estimation of the necessary derivatives may not be numerically stable.

Eg. 1.2 Following Example 1.1, we compute

Xt+1 = Zt+1 − Zt =
〈
log

St+1,1

St,1
, ..., log

St+1,d

St,d

〉
which, when Zt = log(St), we call log returnsdef 1.14 . Rearranging Lt+1:

Lt+1 =
d∑
i=1

λie
Zt,i −

d∑
i=1

λie
Xt+1,i−Zt,i = −

d∑
i=1

λie
Zt,i (eXt+1,i − 1) = −Vt

d∑
i=1

wt,i(e
Xt+1,i − 1)

where wt,i = λiSt,i
Vt

is the relative weightdef 1.15 of stock i at time t. We also consider
ρt,i = λiSt,i . In the language of operators:

l[t](x) = −Vt
d∑
i=1

wt,i(e
xi − 1)

Following Def 1.13,

L∆t+1 = −
d∑
i=1

λie
Zt,iXt+1,i = −Vt

d∑
i=1

wt,iXt+1,i = −ρt • Xt+1

Thus, if we assume that Xt+1 ∼ N (µ,Σ) follows the multivariate normal
distribution,

E[L∆t+1] = −Vt(wt • µ) = −ρt • µ
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with wt =
〈
wt,1, ..., wt,d

〉
. Similarly,

Var(L∆t+1) = V 2
t

d∑
i=1

Var(wt+1Xt+1,i) = V 2
t (wt

TΣwt) = ρt
TΣρt

Note that Σ is a covariance matrix, so wt
TΣwt is indeed a scalar, as expected.

Eg. 1.3 Consider a portfolio with one standard European call on a stock S with
maturity T and exercise price K . The value of European options is modeled
by the Black-Scholes equation:

Vt = CBS(t, St , rt , σt)

where St and σt is the price and volatility of the underlying stock, respectively,
and rt is the risk-free interest rate. We write Zt =

〈
log(St), rt , σt

〉
. The Black-

Scholes equation satisfies

∂CBS

∂t
+
σ2

2
S2∂

2CBS

∂S2 + rS
∂CBS

∂S
− rCBS = 0

Differentiating CBS gives "the Greeks"

CBSt (theta) CBSr (rho) CBSσ (vega) CBSS (delta)

with CBSz = St × CBSS . One can compute the linearized loss to be

L∆t+1 = −CBSt − StCBSS Xt+1,1 − CBSr Xt+1,2 − CBSσ Xt+1,3

Note that

Xt+1 =
〈
log

(
St+1

St

)
, rt+1 − rt , σt+1 − σt

〉

Stylized Loan Portfolio

This is an example of a similar flavor to Example 1.2, but deserves a section of its own.

We will consider a stylized loan portfolio. Let the time horizon ∆t be one year (with this
horizon, we should account for the time value of money).

We lend to m obligors. For each obligor i, let ki denote the amount to be paid at the end of
the present time period, consisting of the loan principle plus interest. Since this payment
is made at time t + 1, ei = ki

1+rt,1
, called the exposure, is the present-day money value of

this payment, where rt,1 is the risk-free interest rate.

There is a possibility that an obligor defaults. Let Yt,i be an indicator variable, called
the default state, that detects whether an obligor defaults by time t. We will assume
Yt,i = 0 and E[Yt+1,i] = pi . In case of default, the lender may recover a portion of the loan,
i.e. (1 − δi)ki , where δi ∈ (0,1]. The expected shortfall associated with obligor i is the
difference between [the present-dollar value of the loan payment at time t + 1] and [the
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present-dollar expected loan payment at time t + 1]

ki
1 + rt,i

−
[
pi(1 − δi)

ki
1 + rt,i

+ (1 − pi)
ki

1 + rt,i

]
ei (1−piδi )

= piδi
ki

1 + rt,i
= piδiei

The value of the loan itself, then, is the [present-dollar loan payment’s value] minus the
[expected shortfall], or ei − piδiei . Note that this is exactly [the present-dollar expected
loan payment at time t + 1], which we already computed. The value of whole the portfolio
is given by

Vt =
m∑
i=1

ei − piδiei =
m∑
i=1

ei(1 − piδi)

At time t + 1, we assume that all obligors have paid off the principle. Hence, Vt+1
encapsulates the actualized payoff made at time t + 1. However, if the loan payments
continued into a second year, we would add on to Vt+1 an estimation of the expected loan
payment at time t + 2. In the former case, we have

Vt+1 =
m∑
i=1

Yt,i(1 − δi)ki + (1 − Yt,i)ki = ki(1 − Yt,iδi)

We adjust for the time value of money in the next calculation:

Lt+1 = Vt −
Vt+1

1 + rt,1
=

m∑
i=1

ei(1 − δipi) − ei(1 − Yt,iδi) =
m∑
i=1

eiδi(Yt,i − pi)

Determining Loss Distributions

In order to determine the loss distribution (Def 1.12), one must model risk factor changes
Xt+1, given a known mapping f (t,Zt) = Vt. We distinguish between:

1. The conditional distribution of risk factor changes, as a function of all information
up to time t. We call the resulting loss distribution is called the conditional loss
disrtibutiondef 1.16 . Note that an estimation of risk factor changes which relies on historical
data is not necessarily a conditional distribution.

2. The stationary distribution of risk factor changes. The resulting loss distribution is
called the unconditional loss distributiondef 1.17 .

variance-covariance method

We will first consider an analytical method for the unconditional distribution of Lt+1.
Assume that Xt+1 has a multivariate normal distribution, and write Xt+1 ∼ N (µ,Σ).
Suppose also that the linearized loss, written as This is not new: ct

denotes the partial
of the realized value
with respect to t, and
bt denotes the
partials with respect
to zt .

L∆t+1 = −(ct + bTt Xt+1)
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is sufficiently accurate, i.e. L∆t+1 = Lt+1. Consequently,

L∆t+1 ∼ N (−ct − bTt µ,b
T
t Σbt)

In this case, the mean vector µ and covariance matrix Σ are estimated from past data.
Hence, inference about the loss distribution are made using these estimates:

L∆t+1 ∼ N (−ct − bTt µ̂,b
T
t Σ̂bt)

The estimation of Lt+1 in this manner is called the Variance-Covariance Method def 1.18. Of its
advantages: it is easy to implement and understand, and it is a closed solution, which
eases compute requirements. However, we reply on heavy assumptions. In particular,
linearized loss is crude, and the normality assumption may seriously underestimate the
tail of the loss distribution.Granted, we can use

the t-distribution to
achieve heavy

tailed-ness
Note: this method is identical to the brief analysis we include at the end of Example 1.2.

historical simulation method

Alternatively, we use an empirical distribution based on historical data Xt−n+1, ...,Xt.This also estimates
the unconditional loss

distribution

To
do so, we construct the historically simulated loss data:

L̃s = f (t, zt) − f (t + 1, zt + Xs) : s ∈ [t − n + 1, t]

Then, we average these estimates to yield a final estimation of the loss distribution:

P(Lt+1 ≤ x) ≈ 1
n

n∑
s=1

1(L̃t−n+s ≤ x)

If Xs are IID, the convergence of the empirical distribution to the true distribution is
ensured. (Real-life risk factor changes are not IID.)Past performance

does not indicate
future gains. The

historical simulation
method is akin to

driving by only
looking through the

rear view mirror

Note that this method can only
estimate the unconditional loss distribution.

monte carlo method

We create a model for risk factor changes, based on data Xt−n+1, ...,Xt, to simulate m new
data points X̃(1)

t+1, ..., X̃
(m)
t+1. Using this data, we construct simulated future loss data:

L̃s = f (t, zt) − f (t + 1, zt + X(m)
t+1) : m ∈ [M]

As before, we average these estimates into a final loss distribution

P(Lt+1 ≤ x) ≈ 1
M

M∑
m=1

1(L̃(m)
t+1 ≤ x)

This method can potential circumvent a lack of historical data with a better model, more
simulations with the model (i.e. M ≫ 0), or more models. However, this method is
potentially expensive, and it relies on training a suitably accurate model.The Monte Carlo

Method is akin to
driving by using the

rear view mirror to
view a front-facing

funny mirror.
Slightly better.
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risk measures

In order to simplify our view of a portfolio’s exposure to risk, we employ mappings from
risk distributions to R, called risk measures. Historically, risk measurement has been
comprised of the following methods:

Notational Risk is simply derived from the sum total of the values of the portfolio’s securities.

Scenario-Based One predicts (e.g. via Markov chains) future scenarios, and measures the expected
maximum future loss of the portfolio against these scenarios.

Loss-Based We provide statistical descriptions of the loss distribution, or an estimate of it.

Building on the previous section, we will primarily concern ourselves with the last method.
However, we consider some examples for each.

Eg. 1.4 Using the notational method, we weigh assets by their riskiness. For instance,
when measuring operational risk, we might use

α

∑3
i=1 max(Gt−i , 0)∑3
i=1 1(Gt−i > 0)

where α ≈ 0.15 and G is gross annual income. This measure tracks the
average gross income over the past 3 years, excluding years where incoming
is 0 or negative. Heuristically, our operational risk (i.e. risk of loss by internal
mismanagement) is proportional to cash flows processed by the institution.

Eg. 1.5 Using the scenario-based method, we consider some fixed risk factor changes
{x1, ..., xn}, with associated weights {w1, ..., wn} describing their likelihood of
occurring. A scenario-based risk assessment is

ψ(L) = max{wiL(xi)}i∈[n]

where L is a loss function.

Eg. 1.6 The oldest loss-based measure simply used the variance of the P&L distribu-
tion as a risk measure. However, this approach requires the existence of a
second moment.

A coherent risk measuredef 1.19 is a function ρ : M → R : L 7→ ρ(L) on the space of random
variables M representing losses. We view ρ(L) has the total amount of equity capital
required to back a position with loss function L. It satisfies the following:

Monotonicity For all L1, L2 ∈ M with L1 ≥ L2 almost surely, Recall the notion of
almost surely:
P(L1 ≥ L2) = 1ρ(L1) ≥ ρ(L2)

Invariance For any L ∈ M and ℓ ∈ R,
ρ(L + ℓ) = ρ(L) + ℓ
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Subadditivity For any L1, L2 ∈ M, we have

ρ(L1 + L2) ≤ ρ(L1) + ρ(L2)

Homogeneity For any L ∈ M and λ ≥ 0 ∈ R,

ρ(λL) = λρ(L)

These axioms are informed by practice and financial intuition:

M. If we are confident that L1 is a riskier position than L2, then surely we would require
more equity to back the first position

I.

S. A diversification of our portfolio should not create extraneous risk (if fact, this is
usually considered a good thing). If this were not the case, an institution could
reduce risk capital by splitting into subsidiaries.

H. ρ(L + · · · + L) ≤ nρ(L) by subadditivity. But we are not diversifying our portfolio,
so it seems silly that we could reduce our risk by simply multiplying the size of
our portfolio. Hence, this holds with equality. In fact, a "don’t put your eggs in one
basket" argument suggests ρ(nL) > nρ(L), but this is prevented by subadditivity.
This last point has sparked much debate over the validity of the last two axioms.

prop 1.2A coherent risk measure is convex, i.e. for all L1, L2 ∈ M and λ ∈ (0, 1)

ρ(λL! + (1 − λL2)) ≤ λρ(L1) + (1 − λ)ρ(L2)

However, the converse is not true.

proof.This follows immediately from subadditivity and homogeneity.

Any function ρ :M→ R : L 7→ ρ(L), whether it satisfies the axioms of Def 1.19, is simply
called a risk measure def 1.20.

Given a tolerance α ∈ (0, 1), Value at Risk def 1.21, a primary risk measure, is defined to be

VaRα(L) = qα(FL) = F−1
L (α) = inf{x ∈ R : FL(x) ≥ α}

where FL is the CDF of the loss distribution. In other words, VaRα(L) is the α-quantile of
FL. With probability at least α we would see losses in the range (−∞,VaRα(L)].

Since VaRα(L) provides a boundary between "likely" and "unlikely" losses, we frequently
put α = 0.95.

prop 1.3Observe that x0 = VaRα(L) if an only if P(L ≤ x0) ≥ α and P(L ≤ x) < α whenever x < x0.

prop 1.4Varα(L) is not coherent. In particular, it does not satisfy subadditivity, but it satisfies the
other axioms of Def 1.19.
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proof. As proof of the fact that VaR does not satisfy subadditivity, we’ll consider a worked
(counter)example.

Consider a portfolio of 50 defaultable bonds with independent defaults. Default on
each bond is IID Yi ∼ Ber(0.02). The current price of bonds is 95, with a face value
equal to 100. In Portfolio A, we buy 100 units of bond 1. In Portfolio B, we buy 2
units of each bond. The value of each portfolio is 9500.

Intuitively, we understand Portfolio A to be riskier. However, we’ll see that VaR shows
the opposite.

Li = 95 − 100(1 − Yi) =⇒ P(Li ≤ x) =


1 x ≤ 95

0 x < −5

0.98 x ∈ [−5, 95)

Then, with a tolerance of α = 0.95, VaRα(Li) = −5. We conclude that

VaRα(LA) = VaRα(100L1) = 100VaRα(L1) = −500

Noting that LB =
∑50
i=1 2Li = −500 + 200

∑50
i=1 Yi , we have that

LB ∼ −500 + 200Bin(50, 0.02)

It follows that VaRα(LB) = −500 + 200VaRα(Bin(50, 0.02)), which, one can calculate, is
−500 + 200 · 3 = 100. Hence, VaRα(LA) < VaRα(LB), which contradicts subadditivity.

Alternatively, we use the expected shortfalldef 1.22 as a risk measure, defined to be

ESα(L) = E[L|L ≥ VaRα(L)]

In other words, assuming that we incur losses above the α-quantile, how much should we
expect to lose? This is akin to a bad-case scenario estimation. If α = 0.95, ESα(L) describes
the expected loss among only extreme (probability < 0.05) losses.

prop 1.5 If L is a continuous distribution, then ESα(L) is a coherent risk measure.

proof. Axioms 1, 2, and 4 of Def 1.19 are inherited from VaRα(L). For subadditivity, note
that

ESα(L) =
1

1 − α
E(L1(L ≥ VaRα(L)))

We will show

(1 − α) [ESα(L1) + ESα(L2) − ESα(L1 + L2)] ≥ 0 ⋆

Let Ii := 1(Li ≥ VaRα(Li)) for i = 1, 2, and I12 = 1(L1 + L2 ≥ VaRα(L1 + L2)). Then

⋆ ⇐⇒ E(L1I1 + L2I2 − (L1 + L2)I12) ≥ 0

⇐⇒ E(L1(I1 − I12)) + L2(I2 − I12) ≥ 0
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We show that

E(L1(I1 − I12)) ≥ E[VaRα(L1)(I1 − I12)] = VaRα(L1)E(I1 − I12)

= E[I1] − E[I12] = P(L1 ≥ VaR(L1)) − P(L1 + L2 ≥ VaRα(L1)) = 0

The L2 case is symmetric. If I1 = 1, then I1 − I12 ≥ 0. Conversely, if I1 = 0, then
I1 − I12 ≤ 0. Hence

E((L1 − VaRα(L1))(I1 − I12)) ≥ 0

prop 1.6If L has continuous density f , then

ESα(L) =
1

1 − α

∫ ∞
VaRα(L)

xf (x)dx

proof.We can view L|L ≥ VaRα(L) as a variable with CDF

G(x) = P(L ≤ x|L ≥ VaRα(L)) =

0 x < VaRα(L)
P(L∈[VaRα(L),x])
P(L≥VaRα(L))

=
FL(x) − FL(Varα(L))

1 − α
=
FL(x) − α

1 − α
: x ≥ VaRα(L)

Hence, L|L ≥ VaRα(L) will have PDF f (x)
1−α when x ≥ VaRα(L), and 0 otherwise.

Eg. 1.7 Suppose L ∼ N (µ, σ2). We know L
d= µ + σL∗, where L∗ ∼ N (0, 1). Then

P(L ≤ x) = FL(x) = P(µ + σL∗ ≤ x)

= P(L∗ ≤
x − µ
σ

) = Φ

(x − µ
σ

)
=: α

where Φ is the CDF of N (0, 1). Then

Φ

(x − µ
σ

)
= α ⇐⇒

x − µ
σ

= Φ−1(α) ⇐⇒ x = µ + σΦ−1(α)

We conclude that VaRα(L) = µ + σVaRα(L∗) = µ + σΦ−1(α).

Eg. 1.8 Similarly, under the same assumptions, we compute ESα(L). This is

ESα(L) = E(µ + σL∗|µ + σL∗ ≥ VaRα(L)) = E(µ + σL∗|µ + σL∗ ≥ µ + σVaRα(L∗))

= E(µ + σL∗|L∗ ≥ VaRα(L∗)) = µ + σE(L∗|L∗ ≥ VaRα(L∗))

= µ + σESα(L∗)
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We must now calculate ESα(L∗) directly, using Prop 1.3:

ESα(L∗) =
1

1 − α

∫ ∞
Φ−1(α)

φ(x)xdx

where N (0,1) follows the PDF φ. But this has the property that φ′(x) =
−xφ(x), so we conclude

ESα(L∗) =
1

1 − α [−φ(x)]∞Φ−1(α) =
φ

(
Φ−1(α)

)
1 − α

and hence ESα(L) = µ + σ
φ(Φ−1(α))

1−α

The shortfall-to-quatile ratiodef 1.23 is

lim
α→1

ESα(L)
VaRα(L)

prop 1.7 When L∗ ∼ N (0, 1), we have

lim
α→1

ESα(L∗)
VaRα(L∗)

= lim
α→1

1
1−αφ(Φ−1(α))

Φ−1(α)
= lim
x→∞

1
1−Φ(x)φ(x)

x
= lim
x→∞

φ(x)
x

1 − Φ(x)

Using L’Hopital’s rule,

lim
x→∞

φ(x)
x

1 − Φ(x)
= lim
x→∞

1 + x2

x2 = 1

Hence, when L ∼ N (µ, σ2), the shortfall-to-quantile ratio also goes to 1.

Eg. 1.9 If L follows the Pareto distribution with parameter θ > 0, i.e.

FL(x) = 1 − x−θ : x ≥ 1

From this, we derive the PDF L(x) = θx−θ−1 : x ≥ 1. Computing VaRα:

1 − x−θ = α =⇒ x = VaRα(L) = (1 − α)−1/θ

Similarly,

ESα(L) =
1

1 − α

∫ ∞
(1−α)−1/α

xθx−θ−1dx =
1

1 − α

∫ ∞
(1−α)−1/α

θx−θdx

Note that this integral only converges when θ > 1. Computing the integral
gives

ESα(L) =
θ

θ − 1
(1 − α)−1/θ =

θ
θ − 1

VaRα(L)

Hence, ESα(L)
VaRα(L) = θ

θ−1
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prop 1.8Suppose FL is continuous and E[|L|] < ∞. Then, for α ∈ (0, 1)

ESα(L) =
∫ 1

α
VaRu(L)du

II Financial Time Series
A time series def 2.1is a collection (Xt : t ∈ Z) of random variables. Some pertinent examples
include log-returns, i.e. log (St/St−1). A stylized fact def 2.2, in this context, is a rudimentary
assumption about the empirical behavior of financial time series. For example, Xt are
not likely to be normally distributed, with slight skewness due to heavy tails and large
kurtosis (see below).

Autocorrelation

We call a time series Xt strictly stationary def 2.3if

(Xt1 , ..., Xtn)
d= (Xt1+h, ..., Xtn+h)

for any choice of t ∈ Zn and h ∈ Z+, which we call lag def 2.4. This is akin to the notion of time
homogeneity of Markov chains. In particular, setting n = 1, Xt has the same distribution
over all t ∈ Z. In this case, we say that Xt follows a stationary distribution def 2.5.Stationary , IID. In

particular, we may
not (probably do not)
have independence
between time-steps.

For a time series Xt, with E[X2
t ] < ∞ ∀t ∈ Z, we define

µ(t) = E[Xt] γ(s, t) = cov(Xs, Xt)

which we call the mean function def 2.6and autocovariance function
def 2.7

, respectively.

For a series that satisfies E[X2
t ] < ∞ ∀t ∈ Z, we call it covariance-stationary def 2.8if

µ(t) = µ ∀t ∈ Z and γ(s, t) = γ(s + h, t + h) ∀t, s, h ∈ Z

Note that a strictly stationary time series which has a finite second moment is also
covariance-stationary.

prop 2.1For a covariance-stationary series, γ(0) = Var(Xt) ∀t ∈ Z.

proof.

γ(h) := γ(h, 0) = cov(Xh, X0) ∀h ∈ Z

The autocorrelation function def 2.9, also called serial correlation, is given by

ρ(h) = cor(Xh, X0) =
γ(h)
γ(0)
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using the notation used in the proof above. In particular, ρ(0) = 1. Recall that

cor(X, Y ) =
cov(X, Y )√

Var(X)Var(Y )

Typically, we observe little autocorrelation on Xt, but profound autocorrelation on |Xt |. This captures the
idea of volatility:
large leaps are
associated with large
losses

We can compute sample autocovariances and autocorrelations:

γ̂ = TODO

Let X have mean µ and variance σ2. Suppose E[|Y |3] < ∞. Then the skewnessdef 2.10 of X is

β := E
[(Y − µ

σ

)3]
=

E[(Y − µ)3]
E[(Y − µ)2]3/2

If β < 0, we say that X is left skeweddef 2.11 . Similarly, when β > 0, we say that X is right skeweddef 2.12 .
A left skewed distribution typically has large mass on its right side, and similarly for a
right skewed distribution. The naming convention describes how a left skewed variable’s
mean is to the left of both its median and mode.

Under the same conditions, suppose E[|Y |4] < ∞. Then the kurtosisdef 2.13 of X is

κ := E
[(Y − µ

σ

)4]
=

E[(X − µ)4]
E[(Y − µ)2]2

A large kurtosis indicates a higher concentration around the variable’s mean.

prop 2.2 If Y ∼ N (µ, σ2), β = 0 and κ = 3.

We can easily find statistical estimates for β and κ as follows:

βn :=
1/n

∑n
i=1(Xi − X)3[

1/n
∑n
i=1(Xi − X)2

]3/2
κn :=

1/n
∑n
i=1(Xi − X)4[

1/n
∑n
i=1(Xi − X)2

]2
The Jarque–Berra statisticdef 2.14 is

Tn =
n
6

(
β2
n +

1
4

(κn − 3)2
)

If X ∼ N (µ, σ2), where µ and σ are unknown, then Tn ∼ χ2
2. Hence, we may use Tn to

reject the null hypothesis that "X is normally distributed." We can think of this
as a simultaneous
statistic for β = 0
and κ = 3

In practice, we observe the following about financial time series:

• Xt is strictly stationary and covariance-stationary.

• Xt is not normally distributed.

• Xt is right-skewed with high kurtosis.

• TODO...
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A white noise process def 2.15Xt is a covariance stationary time series with γ(0) = σ2 and E[Xt] = 0,
whose autocorrelation function is given by

ρ(0) = 1 ρ(h) = 0 ∀h , 0

In other words, this is a series which shows no autocorrelation. We write Xt ∼WN(0, σ2).
A strict white noise def 2.16process Xt is any process of IID random variables with finite variance
σ2. In this case, we write Xt ∼ SWN(0, σ2) when E[Xt] = 0.

The Ljung-Box statistic def 2.17is

Qn = n(n + 2)
h∑
j=1

ρ̂(j)2

n − j
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