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3 LOSS

This course is based on the ETH course and textbook of the same name, by McNeil, Fray,
and Embrechts. The present document is based on this textbook and Prof. Neshlehov’s
lectures. In order, we will focus on: stochastic volatility, extreme-value theory, multivariate
models, risk aggregation, and backtesting.

We will assume good working knowledge of probability and statistics. In addition, we
remind ourselves of the survivor function F(x) := P(X > x) = 1 — F(x), as well as the
a-quantile, where a € (0, 1), defined to be

go = F'(a) = inf{x e R: F(x) > a}

In this course, we would like to quantify one’s exposure to bad consequences. The
likelihood of loss or less-than-expected gains is called risk. The following are types of risk:

_____Risk Description
Credit Risk Odds a debtor defaults on payment
Market Risk Exposure to price fluctuations of bonds, stocks, or

derivatives
Risk relating to circumstantial adverse events (e.g.
institutional fraud)

Operational Risk

Liquidity Risk Risk of damage from not having sufficient assets to
pay off debts
Model Risk Risk associated with financial model inaccuracies;

closely related to operational risk
Underwriting Risk  Odds that an insured makes a claim on their policy

The above types of risk interact with each-other. Quantitative risk management aims to
model these interactions and hedge against risk.

| Loss
RISK FACTORS

A portfolio is a collection of assets or liabilities. Denote by V; the value of the portfolio at
time t. We denote by At a time horizon, i.e. a duration of time. Assuming that V; is known,
that the composition of the portfolio remains constant over the time horizon, and that
there are no payments made, we denote by V;,; the value of the portfolio at time t + At.

We write AV,,; = Vi1 — V;. This is a random variable which takes a negative value on
losses and a positive value on profits. We say that it follows the profit-and-loss distribution.
Since we care about managing risk in this course, we prefer that losses are positively
indicated. Define loss as

Vi = Viz1 Atis ashort horizon
Liy1 =-AVi = v Vil Atisal hori
tT Ton, t 1s a long horizon

Note that, for long time horizons, we must account for the time value of money. If 7, ; is
the risk-free interest rate, applied over At, then a(1 + r; ;) at time t + 1 is the equivalent

Cover: index
simulation following
the stochastic
volatility process

Risk is necessary:
taking this course
incurs a risk of a
poor grade

Portfolios may
include stocks,
bonds, derivatives,
risky loans, or
insurance contracts,
for example.

Hence, Vi, is the
value of the portfolio
at time t + kAt
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This is akin to the
concept of
opportunity cost

If one’s portfolio
consists of insurance
policies, Z; 4 might
be the probability

that a claim is made.

"Observable" =

"Known" =

"Realized" =
"Actualized"
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in value to a at time ¢t. Hence, V;,; must be adjusted to Vei/(1+r,,) to keep L;y1’s time-
value of money consistent. Working in "t + 1 dollars," one could equivalently write
Lyt = Vi(1 +1.1) — Viyq for long time intervals.

V; is a function of multiple risk factors, denoted by Z; = (Z;1,..., Z; 4). Thus, we write
Vi=f(t,Z;) with f : R, x R? — R, called the risk function. When Z; is known, we write
Z, = z,. In this case, f(t,z;) is called the realized value of V.

( )\

Eg. 1.1 Consider a portfolio of d stocks, and let A; denote the number of shares in
stock i at time t. Let S;; denote the price of the stock i. Write

Zt,i = log St,i . l (S [d]

The value of the portfolio is then

d d
Vi= Zl/\ist,i = Zl/\iez"i
i= i=

This formula is called the value with log prices. The purpose of writing Z; =
log(S;) versus Z; = S, is purely numerical.

| J

Risk factors may change over the time horizon. We call time-series changes in risk factors
risk factor changes, denoted by X;,. In particular,

X1 =21 - Zy
Rearranging Def 1.6 gives

Ligi=f(t,Zy) - f(t+1,Z; + Xppq)

When modeling loss, we assume that z; is observable. Thus, we are forced only to consider
X;;1 as a random variable. If x;,; is observable, then L,y is called the realized loss.
Realized loss is notated by [[;)(x) = L;,1, especially when we wish to parameterize x;,;.
For simplicity, we drop the subscript, i.e. x = x;,1. We call this function the loss operator.

We say that L, follows a loss distribution. The loss distribution is typically right-skewed
and has a fat right tail: the probability of heavy profits is small, but it is easy to incur
heavy losses.

We may use a linearization to obtain the linearized loss, denoted LtA+1 ~ L.

The linearized loss, assuming differentiability of f along t and Z,, is given by

d
A
Ly = —filt,z¢) - E fzt,l-(tfzt)XtH,i
i=1
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PROOE. Recall Ly, = f(t,z;) — f(t+1,24,1). We will approximate f(t+1,z;,1):

flt+Lze) = f(tz) + VIt ze) K+ 1, 2441) = (t24))
This is .
ftze) + fi(tzy)- 1+ Zfzw-(tlzt)XHl,i
=l

Applying to L;,; gives

d d
LYy = flbz)=|f(bz) + filtz) + ) fo (b20Xeai| = ~fltbz)= ) fo (20X
i:] 121

as desired. O

Linearized loss is convenient and easy to understand, but the assumption of its accuracy
is a heavy one. An easy improvement would be to consider higher-order Taylor approxi-
mations, but the estimation of the necessary derivatives may not be numerically stable.

Eg. 1.2 Following Example 1.1, we compute

S S
Xt+1 = Zt+1 - Zt = <10g t+1,1 ceey log t+1’d>

DEF 1.14 which, when Z; = log(S;), we call log returns. Rearranging L;,:

d d d d
Lt+1 — Z Aiezf,i _ Z AieXf+l,i_Zt,i - — Z Aiezt,i(ext+l,i _ 1) — _Vt Zwt’i(eXtJrl,i -1
i=1 i=1 i=1 i=1

A;:S
DEF 1.15 where w;; = =5 is the relative weight of stock i at time t. We also consider
’ t.

pti = AiS ;. In the language of operators:

Iin(x) =-V; Zwtz -1)
Following Def 1.13,
Ly, = Z/\ e”i Xy, = Vi Zwt,iXHl,i = =Pt X4

Thus, if we assume that X;,; ~ N (g X) follows the multivariate normal
distribution,

E[LY ] = =Vi(wy - p) = —p¢ - p
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with wy = (wy 1, ..., w; 4). Similarly,

d
Var(Lfyy) = V2 ) Var(wp Xp,i) = V2w, Zwy) = p,"Tp,
i=1

Note that ¥ is a covariance matrix, so w,; Xw; is indeed a scalar, as expected.

Eg. 1.3 Consider a portfolio with one standard European call on a stock S with
maturity T and exercise price K. The value of European options is modeled
by the Black-Scholes equation:

Vt = CBS(t, St’ Tty Gt)

where S; and oy is the price and volatility of the underlying stock, respectively,
and r; is the risk-free interest rate. We write Z; = (log(S;), r1, 0;). The Black-
Scholes equation satisfies

BS 2 2~BS BS
oChs  o? HPCHS | IChS

BS _
ot 2° o952 o5 ¢ =0

Differentiating CB5 gives "the Greeks"
CPS(theta) CPS(rho) CB%(vega) CEZ%(delta)
with CB% = §, x CES. One can compute the linearized loss to be
LYy =—CP° = $,C8 X 11 — CP¥ Xpi10 - CB X1 5

Note that

S
Xiv1 = <10g(%1), T4l =Tt Opg1 — O't>
t

. J

Stylized Loan Portfolio
This is an example of a similar flavor to Example 1.2, but deserves a section of its own.

We will consider a stylized loan portfolio. Let the time horizon At be one year (with this
horizon, we should account for the time value of money).

We lend to m obligors. For each obligor i, let k; denote the amount to be paid at the end of
the present time period, consisting of the loan principle plus interest. Since this payment
is made at time t + 1, e; = %, called the exposure, is the present-day money value of
this payment, where 7, ; is the risk-free interest rate.

There is a possibility that an obligor defaults. Let Y;; be an indicator variable, called
the default state, that detects whether an obligor defaults by time ¢t. We will assume
Y;; = 0and E[Y;,4 ;] = p;. In case of default, the lender may recover a portion of the loan,
i.e. (1 —6;)k;, where 0; € (0,1]. The expected shortfall associated with obligor i is the
difference between [the present-dollar value of the loan payment at time t + 1] and [the
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present-dollar expected loan payment at time ¢ + 1]

ki
1 + rt,i

ki ki | i .
pl(l 61)1 + rt’l + (1 pl)l + rt,Z - plél r" - plblel
L ]

ei(1-p;9;)

The value of the loan itself, then, is the [present-dollar loan payment’s value| minus the
[expected shortfall], or e; — p;0;e;. Note that this is exactly [the present-dollar expected
loan payment at time t + 1], which we already computed. The value of whole the portfolio

is given by
m m

Vi = Zei - pidie; = Zei(l —pid;)

i=1 i=1
At time t + 1, we assume that all obligors have paid off the principle. Hence, V;,;
encapsulates the actualized payoff made at time t + 1. However, if the loan payments
continued into a second year, we would add on to V;,; an estimation of the expected loan
payment at time ¢ + 2. In the former case, we have

m
Vin = ZYt,i(l —0i)ki + (1 = Yy )ki = ki(1 - Y,;6;)
i=1
We adjust for the time value of money in the next calculation:

V m m
Liyg =V - ﬁ = Zei(l —0;pi) —ei(1 =Y, ;0;) = Zeiéi(yt,i - pi)
t} B

Determining Loss Distributions

In order to determine the loss distribution (Def 1.12), one must model risk factor changes
Xi;1, given a known mapping f(t,Z;) = V;. We distinguish between:

1. The conditional distribution of risk factor changes, as a function of all information
up to time t. We call the resulting loss distribution is called the conditional loss
disrtibution. Note that an estimation of risk factor changes which relies on historical
data is not necessarily a conditional distribution.

2. The stationary distribution of risk factor changes. The resulting loss distribution is
called the unconditional loss distribution.

VARIANCE-COVARIANCE METHOD

We will first consider an analytical method for the unconditional distribution of L;,;.
Assume that X;,; has a multivariate normal distribution, and write X;;; ~ N (u, X).

Suppose also that the linearized loss, written as

LtA+1 =—(ct + thXm)

This is not new: ¢;
denotes the partial
of the realized value
with respect to ¢, and
b; denotes the
partials with respect
to z;.



Granted, we can use
the t-distribution to
achieve heavy
tailed-ness

This also estimates
the unconditional loss
distribution

Past performance
does not indicate
future gains. The
historical simulation
method is akin to
driving by only
looking through the
rear view mirror

The Monte Carlo
Method is akin to
driving by using the
rear view mirror to
view a front-facing

funny mirror.
Slightly better.
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is sufficiently accurate, i.e. LtAJrl = L;,1. Consequently,

LA, ~ N(~¢, - b] u,b] Tby)

In this case, the mean vector y and covariance matrix ¥ are estimated from past data.

Hence, inference about the loss distribution are made using these estimates:
A Tar 1wT¥
LtJrl ~ N(_Ct - bt ’bt th)

The estimation of L;,; in this manner is called the Variance-Covariance Method. Of its
advantages: it is easy to implement and understand, and it is a closed solution, which
eases compute requirements. However, we reply on heavy assumptions. In particular,
linearized loss is crude, and the normality assumption may seriously underestimate the
tail of the loss distribution.

Note: this method is identical to the brief analysis we include at the end of Example 1.2.

HISTORICAL SIMULATION METHOD

Alternatively, we use an empirical distribution based on historical data X;_,,1,..., X;. To
do so, we construct the historically simulated loss data:

Li=f(tzy))— f(t+ 1,2z, +X;):se[t—n+1,1]

Then, we average these estimates to yield a final estimation of the loss distribution:

1 & .
P(Livy < %)~ — Y 1(Lipes <)
s=1

If X are IID, the convergence of the empirical distribution to the true distribution is
ensured. (Real-life risk factor changes are not IID.) Note that this method can only
estimate the unconditional loss distribution.

MONTE CARLO METHOD

We create a model for risk factor changes, based on data X;_,,,1, ..., X;, to simulate m new

(1) x\m

data points X, ..., X; .

Using this data, we construct simulated future loss data:

7 (m)

Ly=f(t,z;)) - f(t+ 1,2z, + X, ) : m € [M]

As before, we average these estimates into a final loss distribution

M
1 -
B(Lis €2) % o > UL < x)
m=1

This method can potential circumvent a lack of historical data with a better model, more
simulations with the model (i.e. M >> 0), or more models. However, this method is
potentially expensive, and it relies on training a suitably accurate model.

DEF 1.18
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RISK MEASURES

In order to simplify our view of a portfolio’s exposure to risk, we employ mappings from
risk distributions to R, called risk measures. Historically, risk measurement has been
comprised of the following methods:

Notational Risk is simply derived from the sum total of the values of the portfolio’s securities.

Scenario-Based One predicts (e.g. via Markov chains) future scenarios, and measures the expected
maximum future loss of the portfolio against these scenarios.

Loss-Based We provide statistical descriptions of the loss distribution, or an estimate of it.

Building on the previous section, we will primarily concern ourselves with the last method.

However, we consider some examples for each.

Eg. 1.4

Eg. 1.5

Eg. 1.6

Using the notational method, we weigh assets by their riskiness. For instance,
when measuring operational risk, we might use

?:1 max(G!~, 0)
a :
Yo, 1(Gi > 0)

where a =~ 0.15 and G is gross annual income. This measure tracks the
average gross income over the past 3 years, excluding years where incoming
is 0 or negative. Heuristically, our operational risk (i.e. risk of loss by internal
mismanagement) is proportional to cash flows processed by the institution.

Using the scenario-based method, we consider some fixed risk factor changes
{x1, ..., x,}, with associated weights {wy, ..., w,} describing their likelihood of
occurring. A scenario-based risk assessment is

(L) = max{w; L(x;)}ie[n]
where L is a loss function.

The oldest loss-based measure simply used the variance of the P&L distribu-
tion as a risk measure. However, this approach requires the existence of a

second moment.

DEF 1.19 A coherent risk measure is a function p : M — R : L — p(L) on the space of random
variables M representing losses. We view p(L) has the total amount of equity capital
required to back a position with loss function L. It satisfies the following:

Monotonicity For all L, L, € M with L; > L, almost surely,

p(L1) = p(Ly)

Invariance For any L € M and ¢ € R,

p(L+{0)=p(L)+¢

Recall the notion of
almost surely:
P(L; >2Ly)=1
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Subadditivity For any L, L, € M, we have
p(Ly + Ly) < p(Ly) + p(Lo)
Homogeneity Forany Le Mand A >0 € R,

p(AL) = Ap(L)

These axioms are informed by practice and financial intuition:

M. If we are confident that L, is a riskier position than L;, then surely we would require
more equity to back the first position

I.

S. A diversification of our portfolio should not create extraneous risk (if fact, this is
usually considered a good thing). If this were not the case, an institution could
reduce risk capital by splitting into subsidiaries.

H. p(L +---+ L) < np(L) by subadditivity. But we are not diversifying our portfolio,
so it seems silly that we could reduce our risk by simply multiplying the size of
our portfolio. Hence, this holds with equality. In fact, a "don’t put your eggs in one
basket" argument suggests p(nL) > np(L), but this is prevented by subadditivity.
This last point has sparked much debate over the validity of the last two axioms.

A coherent risk measure is convex, i.e. forall L;,L, € Mand A € (0,1) PROP 1.2
P(AL + (1 = ALy)) < Ap(Ly) + (1 = A)p(Ly)

However, the converse is not true.

This follows immediately from subadditivity and homogeneity. O PROOE.
Any function p : M — R: L - p(L), whether it satisfies the axioms of Def 1.19, is simply
called a risk measure. DEF 1.20
Given a tolerance «a € (0, 1), Value at Risk, a primary risk measure, is defined to be DEF 1.21

VaR,(L) = g, (Fr) = F; (@) = inf{x e R : F1(x) > a}

where F| is the CDF of the loss distribution. In other words, VaR, (L) is the a-quantile of
Fr. With probability at least & we would see losses in the range (—oo, VaR,(L)].

Since VaR, (L) provides a boundary between "likely" and "unlikely" losses, we frequently
put a = 0.95.

Observe that xy = VaR, (L) if an only if P(L < xy) > a and P(L < x) < @ whenever x < x;.  PROP 1.3

Var, (L) is not coherent. In particular, it does not satisfy subadditivity, but it satisfies the = PrOP 1.4
other axioms of Def 1.19.
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PROOE. As proof of the fact that VaR does not satisfy subadditivity, we’ll consider a worked

(counter)example.

Consider a portfolio of 50 defaultable bonds with independent defaults. Default on
each bond is IID Y; ~ Ber(0.02). The current price of bonds is 95, with a face value
equal to 100. In Portfolio A, we buy 100 units of bond 1. In Portfolio B, we buy 2
units of each bond. The value of each portfolio is 9500.

Intuitively, we understand Portfolio A to be riskier. However, we’ll see that VaR shows
the opposite.

1 x <95
L;=95-100(1-Y;) = P(L; <x)=<0 x <=5
0.98 xe€[-5,95)

Then, with a tolerance of a = 0.95, VaR,,(L;) = —5. We conclude that
VaR, (L) = VaR,(100L;) = 100VaR,(L;) = =500
Noting that LB = 2?21 2L; = =500+ 200 2?21 Y;, we have that
LB ~ -500 + 200Bin(50, 0.02)

It follows that VaR,(LB) = —=500 + 200VaR , (Bin(50, 0.02)), which, one can calculate, is
~500 + 200 - 3 = 100. Hence, VaR,(L?) < VaR,(LB), which contradicts subadditivity.
O

DEF 1.22  Alternatively, we use the expected shortfall as a risk measure, defined to be
ES,(L) = E[L|L > VaR,(L)]

In other words, assuming that we incur losses above the a-quantile, how much should we
expect to lose? This is akin to a bad-case scenario estimation. If a = 0.95, ES (L) describes
the expected loss among only extreme (probability < 0.05) losses.

pror 1.5 If L is a continuous distribution, then ES, (L) is a coherent risk measure.

PROOE. Axioms 1, 2, and 4 of Def 1.19 are inherited from VaR,(L). For subadditivity, note

that "
ESq(L) = 7——E(L1(L = VaR,(L)))

We will show
(1 — @) [ES4(L1) + ESa(Ly) = ESa(Ly +Ly)] 20 *
Let I; := 1(L; = VaR,(L;)) for i = 1,2, and Iy, = 1(L; + L, = VaR,(L{ + L;)). Then

* — E(Llll + LZIZ - (Ll + LZ)IIZ) > 0
— E(Li(I} = L12)) + Lo(I2 = I12) 2 0
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We show that

E(Li(I; = I12)) 2 E[VaR,(Ly)(I1 = I12)] = VaR4(Lq)E(I; - I15)
=E[l] - E[I12] = P(L; > VaR(L;)) - P(Ly + L, > VaR,(L;)) = 0

The L, case is symmetric. If I; = 1, then I} — I;; > 0. Conversely, if I; = 0, then
I — I;; £ 0. Hence

E((Ly = VaRy(Ly))(I; = I12)) 2 0 [
If L has continuous density f, then PROP 1.6
1 [ee]
ES,(L) = f xf(x)dx
1 —a Jvar, (1)
We can view L|L > VaR,(L) as a variable with CDF PROOF.
0 x < VaR,(L)
G(x) = P(L < x|L > VaR4(L)) = { p(re[var,(L),x))
P(L>VaR, (L))
l-«a l1-«a
Hence, L|L > VaR, (L) will have PDF % when x > VaR,(L), and 0 otherwise. O

Eg. 1.7 Suppose L ~ N (p, 0?). We know L 4 pu+ oL*, where L* ~ N'(0,1). Then

P(L<x)=Fp(x)=P(p+ 0oL <x

SR < x;”)ch(x;”):;a

where @ is the CDF of N(0,1). Then

CD(x;'M):a = x;y:q)_l(a) = x=p+0d Ya)

We conclude that VaR, (L) = u+ oVaR,(L*) = y+ o @ ! (a).

Eg. 1.8 Similarly, under the same assumptions, we compute ES,(L). This is
ES (L) =E(p+ oL |p+0oL" > VaR, (L)) =E(p+ oL*|p+ oL" > u+ oVaR,(L"))

=E(u+oL*|L* > VaR,(L*)) = p+ oE(L*|L* > VaR,(L"))
=pu+ 0ES, (L")
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We must now calculate ES, (L) directly, using Prop 1.3:

ES, (L") L jm ¢(x)xdx

B l-«a D (a)

—x¢(x), so we conclude

where N (0,1) follows the PDF ¢. But this has the property that ¢’(x) =

g1 o _9(e@)
ESa(L7) = 1= [=0Won oy = —7——
-1
and hence ES, (L) =pu+ o ¢(®_aa))
The shortfall-to-quatile ratio is
ES,(L)

a1 VaR,, (L)
When L* ~ N(0, 1), we have

1
CBSLL) . tee@Na) . tomet) oW
lim ————— = lim —“*—— = lim —— = lim —=—
a—1VaR,(L*) a1 O Na) x—>00 X x—>o0 1 — D(x)
Using L'Hopital’s rule,
P(x) 2
- 1
lim —* = lim — > =1

x—o0 1 — q)(x) x—oo  x2

Hence, when L ~ N (g, o?), the shortfall-to-quantile ratio also goes to 1.

Eg. 1.9 If L follows the Pareto distribution with parameter 6 > 0, i.e.
FL(x):l—x_e:x21

From this, we derive the PDF L(x) = x7 97! : x > 1. Computing VaR:

VaR,(L) — 0-1

1-x%=a = x=VaR,(L)= (1 -a)™”

Similarly,
1 ® —6-1 1 ® —0
ES,(L) = xOx dx = Oxdx

l-« (1—a)"e l-«a (1-aq)
Note that this integral only converges when 6 > 1. Computing the integral
gives

0 1/ 0
ES, (L) = ——(1 - 0= —— L
Sa(l) = (1= @) = == VaRy(L)

Hence, ESall). 0




Stationary = IID. In

particular, we may
not (probably do not)
have independence
between time-steps.
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Suppose F} is continuous and E[|L|] < co. Then, for a € (0,1)

1
ES,(L) = J VaR,(L)du

I Financial Time Series

A time series is a collection (X; : t € Z) of random variables. Some pertinent examples
include log-returns, i.e. log(S/s.,). A stylized fact, in this context, is a rudimentary
assumption about the empirical behavior of financial time series. For example, X; are
not likely to be normally distributed, with slight skewness due to heavy tails and large
kurtosis (see below).

Autocorrelation

We call a time series X; strictly stationary if

d
(th, e Xt,,) = (Xt1+hr e th+h)

for any choice of t € Z" and h € Z,, which we call lag. This is akin to the notion of time
homogeneity of Markov chains. In particular, setting n = 1, X; has the same distribution
over all t € Z. In this case, we say that X; follows a stationary distribution.

For a time series X;, with E[X?] < co YVt € Z, we define
pt) =E[X,]  p(st) = cov(X,, Xy)
which we call the mean function and autocovariance function, respectively.
For a series that satisfies E[X?] < co Vt € Z, we call it covariance-stationary if
ult)=puvVteZ and y(s,t)=p(s+h t+h)Vt,s,heZ

Note that a strictly stationary time series which has a finite second moment is also
covariance-stationary.

For a covariance-stationary series, y(0) = Var(X;) Vt € Z.

y(h) := y(h,0) = cov(Xy, Xo) Vhe Z

The autocorrelation function, also called serial correlation, is given by

() = cor(X;, Xo) = L

(

~

=

PROP 1.8

DEF 2.1

DEF 2.2

DEF 2.3

DEF 2.4

DEF 2.5

DEF 2.6

DEF 2.7
DEF 2.8

PROP 2.1

PROOF.

DEF 2.9
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DEF 2.12

DEF 2.13

PROP 2.2

DEF 2.14

15 FINANCIAL TIME SERIES

using the notation used in the proof above. In particular, p(0) = 1. Recall that

cov(X,Y)

corX, 1) = Var(X)Var(Y)

Typically, we observe little autocorrelation on X;, but profound autocorrelation on |X;|.

We can compute sample autocovariances and autocorrelations:

» = TODO

Let X have mean y and variance o2. Suppose E[|Y[|*] < co. Then the skewness of X is

Yy =Vl ENY - )]
ﬁ“E[( o )]‘E[w—mzrﬁ

If B <0, we say that X is left skewed. Similarly, when p > 0, we say that X is right skewed.

A left skewed distribution typically has large mass on its right side, and similarly for a
right skewed distribution. The naming convention describes how a left skewed variable’s
mean is to the left of both its median and mode.

Under the same conditions, suppose E[|Y[*#] < co. Then the kurtosis of X is
_ E[(X - w]

S ()
K= =
o E[(Y - u)?P?
A large kurtosis indicates a higher concentration around the variable’s mean.

IfY ~N(uo?),=0and x = 3.

We can easily find statistical estimates for g and « as follows:

Vn Y I (X - X)3 Y (X - X)*
[/ ?:1(X,'—Y)2]3/2 [T (% - %02

P =

The Jarque—Berra statistic is
n 1
Th=¢ (ﬁ% + (k0 = 3)2)

If X ~ N(p, 02), where p and o are unknown, then T, ~ x3. Hence, we may use T, to
reject the null hypothesis that "X is normally distributed.”

In practice, we observe the following about financial time series:
* X, is strictly stationary and covariance-stationary.
* X; is not normally distributed.
* X, is right-skewed with high kurtosis.
* TODO...

This captures the
idea of volatility:
large leaps are
associated with large
losses

We can think of this
as a simultaneous
statistic for § =0
and x = 3
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A white noise process X; is a covariance stationary time series with ¥(0) = 02 and E[X;] = 0, DEF2.15
whose autocorrelation function is given by

p(0)=1  p(h)=0VYh=0

In other words, this is a series which shows no autocorrelation. We write X, ~ WN(0, 2).
A strict white noise process X; is any process of IID random variables with finite variance  DEF 2.16
o2. In this case, we write X; ~ SWN(0, 62) when E[X,] = 0.

The Ljung-Box statistic is DEF 2.17
"~ o(j)
Qn :n(n+2)Zn_],

j=1
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